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Chaotic bursting at the onset of unstable dimension variability
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Dynamical systems possessing symmetries have invariant manifolds. According to the transversal stability
properties of this invariant manifold, nearby trajectories may spend long stretches of time in its vicinity before
being repelled from it as a chaotic burst, after which the trajectories return to their original laminar behavior.
The onset of chaotic bursting is determined by the loss of transversal stability of low-period periodic orbits
embedded in the invariant manifold, in such a way that the shadowability of chaotic orbits is broken due to
unstable dimension variability, characterized by finite-time Lyapunov exponents fluctuating about zero. We use
a two-dimensional map with an invariant subspace to estimate shadowing distances and times from the statis-
tical properties of the bursts in the transversal direction. A stochastic model~biased random walk with reflect-
ing barrier! is used to relate the shadowability properties to the distribution of the finite-time Lyapunov
exponents.
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I. INTRODUCTION

When a chaotic dynamical system has some phase-s
symmetry it may exhibit an invariant manifold in which lie
its chaotic invariant set, with the corresponding transve
manifold @1#. A physically relevant example is the partic
motion under a central force, whose intensity depends o
on the absolute value of the distance between the particle
the center of force. The spherical symmetry constrains
particle trajectories to lie on a plane@2#. The dynamics is
thus confined to a four-dimensional invariant subspace
bedded in the full six-dimensional phase space of the sys
Any dependence of the force on the spherical angles wo
break the spherical symmetry and the phase-space traj
ries would no longer be constrained to live in this subspa
Another example is an assembly of coupled identical cha
oscillators, say, of Ro¨ssler systems@3#. If the coupling con-
stants satisfy a given mathematical condition, it may
shown that a low-dimensional synchronization manifold e
ists for which all chaotic oscillators are in phase@4,5#. If the
synchronization manifold is not transversely stable, howe
typical trajectories never asymptote to it.

The synchronization of a coupled chaotic system depe
on the transversal stability properties of the invariant ma
fold ~when it exists! in the phase space@3,6,7#. To analyze
the loss of transversal stability, one must consider those
stable periodic orbits in the chaotic trajectory embedded
the invariant manifold and determine when they beco
transversely unstable@8#. A master stability function tech
nique was proposed to implement this procedure for coup
chaotic discrete and continuous-time systems@9#.

In this paper, we investigate the behavior of chaotic t
jectories off but close to the invariant manifold in a chao
system possessing an invariant subspace. Under certain
ditions these trajectories have an almost regular transve
dynamics, characterized by laminar behavior interrupted
chaotic bursts in an intermittent fashion. This situation h
been extensively studied as a form ofon-off intermittency,
when there is an invariant manifold@10#, and asin-out inter-
mittency, when there is not@11#. On-off intermittency is dis-
1063-651X/2002/66~4!/046213~9!/$20.00 66 0462
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tinguished by its universal scaling for the average duration
the laminar region, and has been observed also in exp
ments@12#.

The main point of this paper is that shadowability brea
down for chaotic trajectories in the invariant manifold is
important consequence of the loss of transversal stability
sociated with chaotic bursting. A chaotic true trajectory
said to becontinuously shadowableif there exists another
chaotic trajectory which:~i! stays close to the former one fo
a sufficiently long time, and~ii ! may be continuously de
formable to the chaotic trajectory@13#. If the chaotic trajec-
tory is continuously shadowable, there is a continuous fam
of noisy trajectories which are shadowed by the same fi
cial chaotic trajectory of the system. For calculating lon
time averages of quantities such as entropies and dimens
it does not matter which noisy trajectory one would tak
provided that this noisy trajectory can be continuously d
formed into the true trajectory.

It turns out, however, that shadowability is not a ma
ematical property which can always be taken for granted
chaotic systems. It has been proved that shadowability o
holds for an infinite time for the special case of hyperbo
systems@14–16#, and the majority of dynamical system
likely to be found in physical applications, are nonhype
bolic. Hyperbolic systems have the splitting between u
stable and stable directions continuously valid for all poi
on the invariant set, and the angle between the correspon
manifolds is bounded away from zero. When the latter c
dition is violated by homoclinic tangencies, shadowability
still valid for a finite time span@19,17,18#.

We will focus on another and stronger form of sha
owability breakdown, caused by the violation of the contin
ous splitting of stable and unstable directions in the invari
set. This occurs when the unstable periodic orbits embed
in the chaotic invariant set have different number of unsta
directions, and has been called unstable dimension varia
ity ~UDV!. UDV was first described in the mathematic
literature in the early 1970’s@20#, but its existence in chaotic
systems of physical interest was first reported~for the peri-
odically kicked double rotor! more than two decades late
©2002 The American Physical Society13-1
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VIANA, PINTO, AND GREBOGI PHYSICAL REVIEW E66, 046213 ~2002!
@21,22#. It was also observed that a hallmark of UDV is th
fluctuating behavior~about zero! of the finite-time Lyapunov
exponent closest to zero. A very drastic consequence of U
is the almost complete breakdown of shadowability for ty
cal chaotic trajectories, in the sense that no actual cha
trajectory is continuously shadowed by a computer-gener
~noisy! chaotic orbit @23,24#. Moreover, microscopic one
step errors inherent to the numerical algorithms used to
tain a trajectory may cause macroscopic errors, many or
of magnitude larger, in long-term averages@25#. Hence
computer-simulated long-time statistics of chaotic dynam
systems exhibiting UDV may not yield useful informatio
even though being correctly obtained from physical law
and can more properly be quoted aspseudodeterministic sys
tems@6#.

This paper investigates the connection between cha
bursting and the breakdown of shadowability via UDV for
two-dimensional map with an invariant subspace. We
scribe the existence of intermittent chaotic bursting for t
system by studying the spike heights in the transversal di
tion as the pointwise shadowing distances. In the same s
the shadowing time is taken as the duration of the lami
regions between two consecutive chaotic bursts, when
shadowing distance is of the order of unity. Our numeri
results are then compared with a stochastic model which
sumes a biased random walk with reflecting barrier@26#, in
such a way that the shadowing distances and times are
lated to the statistical properties of the finite-time Lyapun
exponents in the transversal direction.

Our results support the following conjectures:~i! chaotic
bursting appears at the onset of UDV in chaotic systems w
an invariant subspace and with a number of transversely
stable periodic orbits;~ii ! the shadowability of chaotic trajec
tories is worse as the UDV effect is more intense. In parti
lar, when the latter is maximum, the shadowing time—as
define—vanishes. Although we have used a simple discr
time system to draw these conclusions, we claim that t
can be applicable, for example, to higher-dimensio
coupled chaotic systems.

The rest of this paper is organized as follows: in Sec
we introduce the two-dimensional map with invariant su
space used to study the relation between bursting and U
in Sec. III we present numerical results for shadowing d
tances and times in this model. Section IV quantifies
nonhyperbolicity via UDV by means of finite-time Lyapuno
exponents in the direction transverse to the invariant s
space; and the properties of these exponents are used in
V to derive a stochastic model~biased random walk with
reflecting barrier! which will be used to explain the numer
cal results obtained. The last section contains our con
sions.

II. CHAOTIC BURSTING IN A SYMMETRIC SYSTEM

We consider a class of two-dimensional noninvertib
maps with a skew-product structure and having the dyna
cal properties we wish to study,

xn115 f ~xn!, ~1!
04621
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yn115pg~xn!yn1higher-order odd powers ofyn , ~2!

where xPJ#R1 and yPR1. Due to the reflection (y→
2y) symmetry there is an invariant subspaceM given by
y50, with y as the corresponding transversal direction. T
map ~1! is such that there is a chaotic invariant setV,M,
and p.0 is a bifurcation parameter, such that:~i! pg(xn)
>0 for all xPJ; and ~ii ! g(x)51, whenx5x is some un-
stable periodic orbit embedded inV.

An example of this class of systems is@27#

xn115axn~12xn!, ~3!

yn115pe2b(xn2x)2
yn2yn

3 , ~4!

whereJ5@0,1#, and we choose the parametera so that there
is a dense chaotic orbit inV. For the logistic map~3! there is
a positive Lebesgue measure set of values ofa for which this
is true @28#; and we adopta54, so that the invariant set i
V5J, in such a way thatx512(1/a)53/4 is the unstable
fixed point belonging toV. This is the first periodic orbit of
V to lose transversal stability, as the bifurcation parametep
is varied. If p,1, it is a transversely stable saddle wi
unstable dimension 1~the x direction is unstable! @27#. An
unstable-unstable pair bifurcation~with eigenvalue11) oc-
curs atp5pc51, after which the fixed point atx5x be-
comes a transversely unstable repeller with unstable dim
sion 2. This bifurcation also signals a boundary crisis, for
newborn repeller coalesces with two other repellers belo
ing to the basin boundary of the chaotic attractor inM @7#.
Hence, the chaotic invariant setV, which is an attractor for
p,pc , becomes a nonattracting chaotic saddle forp>pc
@29#.

When the fixed point atx5x loses transversal stability
every preimage also does it. As there is a denumerable
nite and dense set of such eventually fixed points embed
in the chaotic set@30#, it turns out that a dense set of saddl
become repellers. As a result of the saddle-repeller bifur
tion, the repeller and the saddle sets are densely intertw
in J. The saddle-repeller bifurcation marks the onset of UD
in the system. The transversal dynamics after the bifurca
is the result of a competition between attracting and repel
tendencies, as a trajectory off the invariant subspace v
the neighborhood of a saddle or repeller, respectively. A
chored at each repeller there is a tonguelike structure pro
ing itself over positive and negative values ofy due to the
nonlinear term in Eq.~4! ~see Fig. 1! @27,7#. An orbit enter-
ing in such tongue will be rapidly repelled from the invaria
subspace. Since these tongues are dense and typically s
narrow nearM, it takes a very long time for a given orbit t
enter them ~superpersistent chaotic transients! @31#. The
complement of the tongues is a Cantor-like set of posit
Lebesgue measure, or a fat fractal@32#. The orbit returns to a
vicinity of the invariant subspace along this set.

This is the basic mechanism of the chaotic bursting
served for trajectories off but very close to the invariant su
space . An initial conditiony0'0 will generate a trajectory
that wanders back and forth in thex direction, approaching
an infinite number of intertwined saddles and repellers e
3-2
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bedded inM. If p is not much larger than the bifurcatio
point pc51, there is a predominance of saddles, and
orbit is kept in the vicinity of the invariant subspace,
generating the laminar regions in the transversal dynam
Once an orbit approaches a tongue, the resulting escape
reinjection leads to a chaotic burst, followed by anoth
laminar regime and so on. Asp is further increased, othe
unstable periodic orbits embedded in the chaotic setV will
lose transversal stability, and more and more saddles bec
repellers. The relative proportion between saddles and re
lers will change with increasingp, and this will reflect in the
average duration of the laminar regions, since as the rela
repeller population increases inV, chaotic bursting become
more frequent.

The relative dominance of saddles and repellers inV can
be quantitatively described by their contributions to the na
ral ergodic measure of the invariant chaotic set. The nat
measure inV is computed by using a typical trajectory, sin
it originates from a randomly chosen initial condition@33#.
However, the set of unstable periodic orbits embedded inV,
having zero Lebesgue measure, generates atypical meas
and there is an infinite number of such atypical measu
supporting the typical natural measure onV. A relation be-
tween these typical and atypical measures was proven to
ist for hyperbolic systems@34#, but numerical evidence ha
been given to extend its validity to nonhyperbolic ones@35#.
A typical trajectory eventually visits any neighborhood,
matter how small, of any unstable periodic orbit inV.
Hence, there are different contributions to the natural m
sure from saddles and repellers, in the sense of carrying
ferent weights to the total measure@8#.

III. SHADOWING DISTANCES AND TIMES

After the saddle-repeller bifurcation atp5pc the invariant
chaotic setV becomes nonhyperbolic~the splitting between
stable and unstable directions is no longer continuous a
V) and we expect that the shadowability of chaotic trajec
ries in V breaks down forp>pc . In this spirit, we can call
the process UDVintermittency, since here chaotic bursting i
accompanied by the lack of hyperbolicity~in Ref. @25# UDV
is also called an ‘‘intermittency in miniature’’!.

In order to describe how shadowing distances and tim
are numerically estimated, we consider a reference, or ‘‘tr

FIG. 1. Schematic representation of the unstable periodic o
structure appearing after a saddle-repeller bifurcation. Adapted f
Ref. @27#.
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chaotic trajectory inV,M. However, the existence of th
invariant subspaceM is jeopardized by the lack of mode
symmetry caused by small, yet unavoidable, imperfect
rameter determination, and extrinsic noise. We thus exp
that a computer-generated trajectory will start off but ve
close toM. The shadowing distance between the ‘‘tru
chaotic trajectory atM and the pseudotrajectory initialize
nearby is, at each instant, the pointwise distance betw
them in the phase plane. The existence of laminar interv
for which the pseudotrajectory is close toM, is equivalent
to having a pseudotrajectory that continuously shadows
‘‘true’’ chaotic trajectory belonging toM. By the same to-
ken, bursting is an observable manifestation for the lack
shadowability, while the lengths of the laminar interva
yield estimates for the shadowing times. Hence, the prop
ties of chaotic bursting are related to the statistics of sh
owing distances and times.

We present numerical results for the map~3!,~4!, consid-
ering fixed values ofa and b, and varying the bifurcation
parameterp.1 to achieve situations where UDV and ch
otic bursting occur. A ‘‘true’’ chaotic trajectory is known to
exist for initial trajectories (x,y50) randomly chosen inV
with respect to the Lebesgue measure. The pseudotraject
we generate are meant to represent numerically obtained
bits, for which we cannot have an initial condition exact
placed aty50 but which, instead, will have some transvers
uncertainty. Since thex part of the map~3! does not depend
on y, the evolution along thex direction of both trajectories
is the same for all times, and the pointwise distance betw
a chaotic trajectory and a pseudotrajectory will be simply
value of yn for the latter. Finally, a computer-generate
pseudotrajectory is likely to suffer the action of roundo
errors, which we can systematically simulate by corrupt
our pseudotrajectory with randomly applied kicks of sm
magnitude 102q, which play the role of one-step errors@36#.

We must emphasize that the pseudotrajectories do not
long toV but are, strictly speaking, bona fide chaotic traje
tories belonging to a larger invariant set in whichV is a
subset. The fold introduced in they part of the map~4!
ensures that this larger chaotic set is recurrently close toM
and does not asymptote to infinity, as it would be the cas
the cubic term in Eq.~4! would have a positive sign, as i
Ref. @27#. In the latter case, one would have a chaotic tra
sient. However, our results are not essentially dependen
the existence of this fold, since if the chaotic transient wo
escape to infinity, we would generate other chaotic transie
by choosing another initial condition close toM. In Fig. 2,
we show two examples of high-precision pseudotrajecto
generated using the procedure described above. The n
level is fixed at 10216, which can be regarded as the com
puter roundoff introduced by a double precision floatin
point arithmetics. Figures 2~a! and 2~b! refer to different
postcritical values of the bifurcation parameter (p.1). We
record the values ofyn , or the pointwise shadowing dis
tances, at each time, yielding the corresponding log distan
zn5 lnuynu. The use of an external kick creates a ‘‘barrier’’ o
width 102q preventing pseudotrajectories from having sha
owing log distances less thanq on average. The shadowin

it
m

3-3
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distances may be large due to chaotic bursting, but they
predominantly very small~within the laminar regions!; the
bursting being more effective asp increases.

Figure 3 presents statistical distributions of the shadow
log distanceszn for two postcritical values ofp and external
kicks of different magnitudes. In all depicted cases, the~nor-
malized! distribution height falls rapidly down to zero fo
shadowing distances less than 102q, as expected, and de
creases exponentially for higher shadowing distances

Pd~z!5Pd0exp@2k~p!~z2 ln q!#, ~5!

FIG. 2. Pseudotrajectories for the map~3!,~4! with a54.0, b
55.0, and a noise level 102q, with q516, and~a! p52.30; ~b! p
52.55.

FIG. 3. Statistical distribution of pointwise shadowing log d
tances for~a! p52.10, ~b! p52.55, and three different noise level
04621
re

g
wherePd(z)dz is the probability for the shadowing log dis
tance to lie betweenz and z1dz. As p increases from 2.1
@Fig. 3~a!# to 2.55 @Fig. 3~b!# this decrease becomes slow
@k(p2),k(p1) for p2.p1], meaning that, as the UDV ef
fect is more intense, we have a progressive dominance
higher shadowing distances~or taller spikes!. This is in ac-
cordance with the greater content of transversely unsta
periodic orbits asp is increased frompc51 and, conse-
quently, an increased transversely repelling behavior on
erage.

The shadowing log distances experience spikes of var
heights, but remain in the immediate vicinity of the invaria
subspaceM, until they burst chaotically and return toM.
We define the shadowing time as the interval it takes for
pointwise shadowing distance to grow to the order of
attractor size, ory5yA51. Figure 4 shows the dependen
of the log-shadowing times, for different values ofp, on the
noisy kick strength levelq. The top curve was obtained fo
p052.1, and the curves below correspond topj5p01 j dp,
for j 51,2, . . . ,9 anddp50.05. The results suggest that th
distribution of the average shadowing times is of a pow
law nature with respect to the noise levelq. This can also be
derived by integrating the distribution~5! for shadowing log
distances, in order to obtain the probability for a shadow
distance to be greater thanyA , at a given noise levelq,

Pt~q!;exp@2k~p!~ ln yA2 ln q!#5qk(p). ~6!

In the next sections, we will see that these probability dis
butions for the shadowing distances and times can be th
retically justified by rather general arguments, and that

FIG. 4. Shadowing times as a function of the kick strength
ponent, or the number of accuracy digits. The various lines
least-squares fits obtained for different values of the bifurcat
parameterp. The top line is forp52.1 and the lines below are fo
values ofp with a constant increment ofdp50.05. The slopes of
these lines are depicted as boxes in Fig. 7.
3-4
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characteristic exponentk can be predicted from the statist
cal properties of the finite-time Lyapunov exponents.

IV. FINITE-TIME LYAPUNOV EXPONENT

When an initial condition is placed off but near the inva
ant chaotic setV,M, it will generate an orbit that visits the
neighborhood of unstable periodic orbits inV with different
numbers of unstable directions. Now let us imagine a sm
ball of initial conditions having a nonempty intersection wi
M. What will happen as time evolves? If the ball is plac
near a saddle~transversely stable!, the dynamics at a given
time will make the ball shrink on average along the transv
sal direction and turn into a thin cigarlike tube@8#. After
some time, the cigarlike tube will approach a repeller inM
~transversely unstable! and will expand on average als
along they direction. This process is likely to repeat itself
many times as the trajectories alternately approach sad
and repellers inM.

The finite-time Lyapunov exponents in the transversal
rection,ly(x0 ,y0 ,n), are the average rates of these temp
rary expansions and contractions along they axis, for which
they can be negative or positive, depending on whether
trajectory is in the neighborhood of a saddle or a repel
respectively. They are defined, for a two-dimensional m
F(x,y) of the form ~1!,~2!, as@37#

ly~x0 ,y050;n!5
1

n
lnuuDFn~x0 ,y050!•vyuu, ~7!

wherevy is the singular vector related to the singular val
jy of then times iterated tangent map. The infinite-time lim
of Eq. ~7! is the transversal Lyapunov exponent

lT5 lim
n→`

ly~x0 ,y050;n!, ~8!

and has the same value for almost allx0PJ, whereas its
he
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finite-time counterpart does depend onx0. On considering
the map~3!,~4! for p.1, the intertwined sequence of saddl
and repellers inM is such that a bursting trajectory wi
have nonoverlapping sections of finite duration, for whichly

fluctuates about zero@22#.
It is useful to introduce another probability distributio

PL„ly(x0 ,y0 ;n),n… for the finite-time Lyapunov exponents
where the initial conditions (x0 ,y050) are randomly chosen
according to the Lebesgue measure ofV. From this prob-
ability distribution, we can obtain moments of functions
the finite-time exponent, as averages@37#,

FIG. 5. Probability distributions for finite-time transvers
Lyapunov exponents forn550 and different values of the bifurca
tion parameter.
m5^ly~x0 ,y050,n!&5E
2`

1`

ly~x0 ,y050,n!PL„ly~x0 ,y050,n!,n…dly , ~9!
b-
c-

e

by
and dispersions,

sn
25^@ly~x0 ,y050,n!2m#2&5^ly

2&2^ly&
2, ~10!

assuming proper normalization forPL(ly).
For n large enough, this distribution can be written in t

following form @38#:

PL„ly~n!,n…'AnG9~lT!

2p
e2nG(ly), ~11!

where the functionG(ly) is such thatG(lT)5G8(lT)50
andG9(lT).0. Expanding in powers ofly2lT , we have a
Gaussian probability distribution,
PL„ly~n!,n…'AnG9~lT!

2p
expF2

nG9~lT!

2
~ly2lT!2G .

~12!

We can obtain a numerical approximation for this pro
ability distribution by considering a large number of traje
tories of fixed length, sayn550, from initial conditions ran-
domly chosen inV. Figure 5 shows the distribution of th
finite-time exponents,P„ly(50)…, for three different values
of the bifurcation parameterp. The distributions have a
Gaussian-like shape, as expected from Eq.~12!, and the dis-
tribution as a whole drifts toward positive values ofly , asp
increases, without noticeable distortion. This is illustrated
3-5
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VIANA, PINTO, AND GREBOGI PHYSICAL REVIEW E66, 046213 ~2002!
Fig. 6, where we depict the average finite-time exponent~9!
versusp, showing thatm builds up toward positive values a
p increases, and vanishes atp5p* '2.55. Note that the plo
does not change if we use time delays widely different fr
each other~like n51 andn550). In fact, it follows, from
Eq. ~12!, that the average finite-time exponent does not
pend onn and it is equal to the infinite-time exponentm
5lT , given by Eq.~8!, and which governs the transvers
stability of V as a whole. The pointp* 52.55 is known as a
blowout bifurcation, sinceV becomes transversely unstab
for p.p* @8#. In this situation, the saddles and repellers
V carry equal weights in their relative contributions tolT ,
in terms of the natural measure ofV, so that their contribu-
tions are precisely balanced atp5p* .

The dispersion, or variance of the averagem with respect
to a sample of sizen, given by Eq.~10!, is constant for allp
values. This means that the probability distribution does
alter its shape asp changes~see Fig. 5!. Using Eq.~12! we
find, for a Gaussian distribution, thatsn

251/G9(lT) does not
depend onn. However, for later reference, we note that t
variance of the total population is equal to the product of
variance of the average by the sample size@39#, such that the
total variance of the finite-time exponents iss25nsn

2 .

V. A STOCHASTIC MODEL FOR SHADOWING
DISTANCES

The link between shadowability breakdown and chao
bursting is the mixing between unstable orbits with differe
numbers of unstable directions, and this diversity should
reflected in the statistical properties of the correspond
finite-time Lyapunov exponents. This is the main idea und
lying a stochastic modeling of the chaotic bursting.

A pseudotrajectory starting off but near the invariant su
space will wander along thex direction according to the un

FIG. 6. Average value of finite-time transversal Lyapunov exp
nents vs the bifurcation parameterp, for n51 ~circles! andn550
~crosses!.
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stable eigenvalue of the periodic orbits embedded inV. As
the trajectory approaches orbits with different numbers
unstable directions, it will move either toward or apart fro
V for finite time segments. Letyk be the transversal distanc
of the pseudotrajectory at timek. During a short time interval
of length n, the local expansion rate is the correspondi
finite-time transversal exponent, such thatyk1n
;yk exp@nly(n)#. It follows that the log-shadowing distance
satisfyzk1n;zk1nly(n).

When V exhibits UDV, at least one of the time-n expo-
nentsly(n) fluctuates in a stochastic fashion about zero, a
these are the random innovations which kick the lo
shadowing distances toward or away from a chaotic tra
tory confined to the invariant subspaceM. Hence, the time
evolution of the log-shadowing distances can be regarde
an additive random process, with a diffusion rate being giv
by the dispersion of the finite-time exponents, which w
have measured by the total variances2 of their statistical
distribution PL„ly(n),n…. However, the distribution of
ly(n) is such that there is a different amount of positive a
negative values~see Fig. 5!. For example, if their averagem
is positive the transversal displacements of a pseudotra
tory will have a positive average expansion rate, which
scribes a biased random walk, in which a driftm has been
included @26#. The arguments above justify the use of
Chapman-Kolmogorov diffusion equation for the spatiote
poral evolution of the distribution of the shadowing log di
tancesP(z,n) with respect to the timen and the log distance
z ~assumed to be continuous variables! @40#,

]P~z,n!

]t
5

s2

2

]2P~z,n!

]z2
1m

]P~z,n!

]z
. ~13!

We have obtained a chaotic pseudotrajectory by:~i! placing
the initial condition off but close to the invariant subspac
and ~ii ! adding kicks of a constant strength 102q to it. The
latter feature can be included in a stochastic model of
situation by a reflecting barrier placed ony* 5102q, which
implies a boundary condition atz* .q. Moreover, we have
to impose the following boundary conditions:P(z→`)
5(]P/]z)z→`50. The diffusion process governed by E
~13! has an equilibrium distribution given by (]PEQ /]n)
50, which reads

PEQ~z,n!5
2umu

s2
expF2

2umu

s2
~z2 ln q!G , ~14!

which is similar to the numerically obtained distributio
Pd(z), given by Eq. ~5!, provided we identify the decay
exponentk with the so-calledhyperbolicity exponent@25#,

h[
2umu

s2
. ~15!

The statistical distributions in Fig. 3 are in fact of an exp
nential nature and have a cutoff at the reflecting barrier. F
ure 7 shows a comparison between the numerically obta
slope of the exponentially decaying distribution~crosses! and

-
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the theoretical prediction of Eq.~15! ~diamonds and triangle
are for different finite-time exponents!. There is an increas
ingly better agreement among these values, as we appr
p5p* 52.55, the value for which the UDV effect is th
most pronounced.

The good agreement between theory and numerical
periment atp5p* is a consequence of the fact that, wh
the UDV effect is more pronounced, the average finite-ti
exponent vanishes (m50), so that there is an approximate
equal number of positive and negative innovations acting
a pseudotrajectory shadowing a chaotic trajectory inV. In
this case, the Markovian random walk approximation is v
good and, as we move away from this value, the bias cau
by a nonzero average exponent makes the equilibrium di
bution given by Eq.~14! a poorer version of the stochast
process. Actually the bursting is chaotic, and some degre
dynamical correlation is expected to take place at every
ment, preventing us from successfully using linear stocha
models such as those considered here. The finite-time e
nents withn52 ~diamonds in Fig. 7! are consistently bette
than the ones withn550 ~shown in Fig. 7 as triangles!,
which implies that the underlying dynamical structure ca
ing UDV is actually very complicated. The saddles and
pellers belonging toV are so densely intertwined that
pseudotrajectory will suffer influences of the different nu
ber of their unstable directions over very short periods
time, and an52 exponent is expected to give results clos
to a Markovian stochastic process, when compared wit
n550 exponent.

The stochastic model we use for a biased random w
with reflecting barrier can also be worked out to estimate

FIG. 7. Comparison between the slopes of statistical distri
tions of shadowing distances and times. The numerically obta
slopes for distributions of log-shadowing distances~crosses! are
based on Fig. 3; diamonds~triangles! stand for the theoretical pre
diction of Eq. ~14! based onn52 (n550) finite-time Lyapunov
exponents; boxes are for numerically obtained distribution slope
shadowing times, according to Fig. 4.
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shadowing timet, by imposing thatyn1t be greater than
yA51. Using Laplace transforms, we obtain the followin
theoretical estimate of the average shadowing time@26#:

^t&5
1

h
~qh21!2

ln q

umu
. ~16!

In terms of the intermittent chaotic bursting, a numeric
estimate for the shadowing time is the average value^t& of
the interspike intervals, or laminar regions, yielding a sta
tical distribution P̃T , scaling linearly witht. For q small
enough, this expression reduces to a power-law scaling w
the noise levelq,

P̃T~q!;qh, ~17!

in agreement with the numerical result of Eq.~6!, provided
k(p)5h.

It should be remarked, however, that Eq.~16! may not
hold if m is near zero, which nevertheless, does not spoil
small-q scaling above. This power-law scaling is confirm
by our numerical experiments. The slopes of the vario
curves in Fig. 4, corresponding to different values of t
bifurcation parameterp, are depicted as boxes in Fig. 7. W
have a better agreement between theoretical and nume
results for the shadowing time distribution than for the lo
shadowing distance distribution. The reason for this fact
in the different definitions we use for shadowing distanc
and times. The former are very precisely defined as po
wise distances between two trajectories, whereas the la
are defined in a less accurate way since:~i! shadowing times
are measured when the log-shadowing distances excee
arbitrary threshold;~ii ! we compute average values over ve
long chaotic transients. Hence, the overall behavior of sh
owing times is more likely emulated by a stochastic mod

VI. CONCLUSIONS

The breakdown of shadowability for chaotic trajectori
due to unstable dimension variability is a very serious c
straint on the applicability of mathematical models for su
dynamical systems. For a physical system, even when
model is based on sound theoretical framework, there m
be doubts about the validity of computer-generated traje
ries, since in absence of continuous shadowability of traj
tories, no pseudotrajectory of a reasonable length is expe
to be shadowed by a real chaotic trajectory. Even long-ti
averages may be of no practical interest due to the expo
tial amplification of extremely small one-step errors. In th
case we would have to resort to chaotic time series anal
to extract information about the system directly from t
observed data. Spatially extended systems of coupled
tinuous or discrete time oscillators were shown to pres
UDV for nonzero parameter ranges, and this fact pervade
even wider class of dynamical systems, if we consider t
virtually all numerical schemes for solving partial differe
tial equations are based in some kind of discretization le
ing to coupled systems. In spite of this, UDV can be o
served in very simple dynamical systems, like the tw
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dimensional map considered in this paper.
Intermittent chaotic bursting has been extensively

scribed in the literature, and it is present in a variety
mathematical models, as well as in experiments. Whe
system fails to be hyperbolic due to UDV, it may prese
intermittent bursting if it exhibits some symmetry leading
a low-dimensional invariant subspace. This type of interm
tent transition has been observed, for example, in the tra
tion between synchronized and non-synchronized beha
in a lattice of piecewise linear maps with a long-range c
pling @41#. For general systems ofN coupled maps or oscil
lators, the invariant subspace of interest is theM-dimensional
synchronization manifold~where M!N), and we would
have to investigate the correspondingN2M transversal di-
rections.

This work has focused on the relation between cha
bursting and the nonhyperbolic structure of the invariant c
otic set embedded in the invariant subspace. Numerical
dence has been given that the distribution of the shadow
distances is of an exponential nature, the decay rate b
v.
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ci.
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related to the statistical properties of the finite-tim
Lyapunov exponents along the transversal direction. The
erage shadowing times, on their way, have a power-law s
ing with the noise level. A theoretical stochastic model,
suming a biased random walk with reflecting barrier at
noise level, is used to explain the numerical results, and
agreement is as good as one approaches the dynamica
gime where the UDV is most intense, namely, at the vicin
of a blowout bifurcation, in which the invariant subspa
loses its transversal stability.
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