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Chaotic bursting at the onset of unstable dimension variability
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Dynamical systems possessing symmetries have invariant manifolds. According to the transversal stability
properties of this invariant manifold, nearby trajectories may spend long stretches of time in its vicinity before
being repelled from it as a chaotic burst, after which the trajectories return to their original laminar behavior.
The onset of chaotic bursting is determined by the loss of transversal stability of low-period periodic orbits
embedded in the invariant manifold, in such a way that the shadowability of chaotic orbits is broken due to
unstable dimension variability, characterized by finite-time Lyapunov exponents fluctuating about zero. We use
a two-dimensional map with an invariant subspace to estimate shadowing distances and times from the statis-
tical properties of the bursts in the transversal direction. A stochastic nfloidsked random walk with reflect-
ing barriey is used to relate the shadowability properties to the distribution of the finite-time Lyapunov

exponents.
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[. INTRODUCTION tinguished by its universal scaling for the average duration of

the laminar region, and has been observed also in experi-

When a chaotic dynamical system has some phase-spao®ents[12].
symmetry it may exhibit an invariant manifold in which lies ~ The main point of this paper is that shadowability break-
its chaotic invariant set, with the corresponding transversatlown for chaotic trajectories in the invariant manifold is an
manifold [1]. A physically relevant example is the particle important consequence of the loss of transversal stability as-
motion under a central force, whose intensity depends onlgociated with chaotic bursting. A chaotic true trajectory is
on the absolute value of the distance between the particle arshid to becontinuously shadowablé there exists another
the center of force. The spherical symmetry constrains thehaotic trajectory which(i) stays close to the former one for
particle trajectories to lie on a plafj€]. The dynamics is a sufficiently long time, andii) may be continuously de-
thus confined to a four-dimensional invariant subspace enformable to the chaotic trajectofL3]. If the chaotic trajec-
bedded in the full six-dimensional phase space of the systentory is continuously shadowable, there is a continuous family
Any dependence of the force on the spherical angles wouldf noisy trajectories which are shadowed by the same fidu-
break the spherical symmetry and the phase-space trajectoral chaotic trajectory of the system. For calculating long-
ries would no longer be constrained to live in this subspacetime averages of quantities such as entropies and dimensions
Another example is an assembly of coupled identical chaoti@@t does not matter which noisy trajectory one would take,
oscillators, say, of Resler system§3]. If the coupling con-  provided that this noisy trajectory can be continuously de-
stants satisfy a given mathematical condition, it may beformed into the true trajectory.
shown that a low-dimensional synchronization manifold ex- It turns out, however, that shadowability is not a math-
ists for which all chaotic oscillators are in phdge5]. If the  ematical property which can always be taken for granted in
synchronization manifold is not transversely stable, howeverchaotic systems. It has been proved that shadowability only
typical trajectories never asymptote to it. holds for an infinite time for the special case of hyperbolic

The synchronization of a coupled chaotic system dependsystems[14—-16, and the majority of dynamical systems,
on the transversal stability properties of the invariant manidikely to be found in physical applications, are nonhyper-
fold (when it exist$ in the phase spade,6,7]. To analyze bolic. Hyperbolic systems have the splitting between un-
the loss of transversal stability, one must consider those urstable and stable directions continuously valid for all points
stable periodic orbits in the chaotic trajectory embedded iron the invariant set, and the angle between the corresponding
the invariant manifold and determine when they becomeamanifolds is bounded away from zero. When the latter con-
transversely unstablE8]. A master stability function tech- dition is violated by homoclinic tangencies, shadowability is
nigue was proposed to implement this procedure for coupledtill valid for a finite time sparj19,17,18.
chaotic discrete and continuous-time syst¢fis We will focus on another and stronger form of shad-

In this paper, we investigate the behavior of chaotic tra-owability breakdown, caused by the violation of the continu-
jectories off but close to the invariant manifold in a chaoticous splitting of stable and unstable directions in the invariant
system possessing an invariant subspace. Under certain caget. This occurs when the unstable periodic orbits embedded
ditions these trajectories have an almost regular transversad the chaotic invariant set have different number of unstable
dynamics, characterized by laminar behavior interrupted bylirections, and has been called unstable dimension variabil-
chaotic bursts in an intermittent fashion. This situation hasty (UDV). UDV was first described in the mathematical
been extensively studied as a form af-off intermittency literature in the early 1970%20], but its existence in chaotic
when there is an invariant manifoJd0], and asn-out inter-  systems of physical interest was first reportéat the peri-
mittency when there is noftl1]. On-off intermittency is dis- odically kicked double rotgrmore than two decades later
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[21,22. It was also observed that a hallmark of UDV is the Yn+1=PA(X,)ynt higher-order odd powers of,, (2)
fluctuating behaviofabout zerd of the finite-time Lyapunov

exponent closest to zero. A very drastic consequence of UDWhere xe JCR! and ye R, Due to the reflection y—

is the almost complete breakdown of shadowability for typi-—y) symmetry there is an invariant subspat¢ given by

cal chaotic trajectories, in the sense that no actual chaotig=0, withy as the corresponding transversal direction. The
trajectory is continuously shadowed by a computer-generateghap (1) is such that there is a chaotic invariant §eC M,
(noisy) chaotic orbit[23,24. Moreover, microscopic one- and p>0 is a bifurcation parameter, such thét: pg(x,)
step errors inherent to the numerical algorithms used to ob=0 for all xe J; and (i) g(x)=1, whenx= y is some un-
tain a trajectory may cause macroscopic errors, many ordegsable periodic orbit embedded .

of magnitude larger, in long-term averag€®5]. Hence An example of this class of systems[&7]
computer-simulated long-time statistics of chaotic dynamical

systems exhibiting UDV may not yield useful information, Xnt1=aXy(1—Xp), 3)
even though being correctly obtained from physical laws,

and can more properly be quotedmudodeterministic sys- Yni1=pe b(Xn*x)Zyn_yﬁ, (4)
tems[6].

This paper investigates the connection between chaotiwhereJ=[0,1], and we choose the parameteso that there
bursting and the breakdown of shadowability via UDV for ais a dense chaotic orbit 2. For the logistic mag3) there is
two-dimensional map with an invariant subspace. We dea positive Lebesgue measure set of values fof which this
scribe the existence of intermittent chaotic bursting for thisis true[28]; and we adopa=4, so that the invariant set is
system by studying the spike heights in the transversal direa) = J, in such a way thay=1—(1/a)=3/4 is the unstable
tion as the pointwise shadowing distances. In the same spirifixed point belonging td). This is the first periodic orbit of
the shadowing time is taken as the duration of the laminar) to lose transversal stability, as the bifurcation paramgter
regions between two consecutive chaotic bursts, when thg varied. If p<1, it is a transversely stable saddle with
shadowing distance is of the order of unity. Our numericalynstable dimension {the x direction is unstable[27]. An
results are then compared with a stochastic model which agmstable-unstable pair bifurcatigwith eigenvalue+ 1) oc-
sumes a biased random walk with reflecting barf&6], in  curs atp=p.=1, after which the fixed point at=y be-
such a way that the shadowing distances and times are rgomes a transversely unstable repeller with unstable dimen-
lated to the statistical properties of the finite-time Lyapunovsjon 2. This bifurcation also signals a boundary crisis, for the
exponents in the transversal direction. newborn repeller coalesces with two other repellers belong-

Our results support the following conjecturés: chaotic ing to the basin boundary of the chaotic attractor\iti[7].
bursting appears at the onset of UDV in chaotic systems withyence, the chaotic invariant sét, which is an attractor for

an invariant subspace and with a number of transversely un; p., becomes a nonattracting chaotic saddle fexp,
stable periodic orbitgji) the shadowability of chaotic trajec- [29].

tories is worse as the UDV effect is more intense. In particu- \wnen the fixed point ax= y loses transversal stability

lar, when the latter is maximum, the shadowing time—as Weyyery preimage also does it. As there is a denumerable infi-
define—vanishes. Although we have used a simple discretgjiie and dense set of such eventually fixed points embedded
time system to draw these conclusions, we claim that they, the chaotic seff30], it turns out that a dense set of saddles
can be applicable, for example, to higher-dimensionahecome repellers. As a result of the saddle-repeller bifurca-
coupled chaotic systems. _ , tion, the repeller and the saddle sets are densely intertwined
The rest of this paper is organized as follows: in Sec. lliy 3 The saddle-repeller bifurcation marks the onset of UDV
we introduce the two-dimensional map with invariant sub-jy the system. The transversal dynamics after the bifurcation
space used to study the relation between bursting and UDVs the result of a competition between attracting and repelling
in Sec. IIl we present numerical results for shadowing disyengencies, as a trajectory off the invariant subspace visits
tances and times in this model. Section IV quantifies thgpe neighborhood of a saddle or repeller, respectively. An-
nonhyperbolicity via UDV by means of finite-time Lyapunov cnored at each repeller there is a tonguelike structure project-
exponents in the direction transverse to the invariant SUbrng itself over positive and negative valuesyoflue to the
space; a_nd the properti_es of thes_e exponents are used_in SR6enlinear term in Eq(4) (see Fig. 1[27,7]. An orbit enter-
V to derive a stochastic modgbiased random walk with jq in such tongue will be rapidly repelled from the invariant
reflecting barrier which will be used to explain the numeri- subspace. Since these tongues are dense and typically super-
cal results obtained. The last section contains our conclusarrow nearM, it takes a very long time for a given orbit to

sions. enter them (superpersistent chaotic transien{81]. The
complement of the tongues is a Cantor-like set of positive
II. CHAOTIC BURSTING IN A SYMMETRIC SYSTEM Lebesgue measure, or a fat fradtd2]. The orbit returns to a

) _ _ _ _vicinity of the invariant subspace along this set.
We consider a class of two-dimensional noninvertible  Thjs is the basic mechanism of the chaotic bursting ob-
maps with a skew-product structure and having the dynamiseryed for trajectories off but very close to the invariant sub-

cal properties we wish to study, space . An initial conditiory,~0 will generate a trajectory
that wanders back and forth in thedirection, approaching
Xnt1=F(Xpn), (1) an infinite number of intertwined saddles and repellers em-
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open de{?ﬁe set of f?”gues chaotic trajectory il C M. However, the existence of the
¢ S T '-;‘ 7‘ B 'T invariant subspace\ is jeopardized by the lack of model
’ / symmetry caused by small, yet unavoidable, imperfect pa-

rameter determination, and extrinsic noise. We thus expect
that a computer-generated trajectory will start off but very

y=0", v y y y X invariant close to M. The shadowing distance between the “true”
A " A A ' subspace chaotic trajectory atM and the pseudotrajectory initialized
o nearby is, at each instant, the pointwise distance between
closed dense : . . .
them in the phase plane. The existence of laminar intervals,
set of saddles i L l l for which the pseudotrajectory is close Ad, is equivalent

to having a pseudotrajectory that continuously shadows the
FIG. 1. Schematic representation of the unstable periodic orbitire” chaotic trajectory belonging toVi. By the same to-
structure appearing after a saddle-repeller bifurcation. Adapted fror‘Ren’ bursting is an observable manifestation for the lack of
Ref.[27]. shadowability, while the lengths of the laminar intervals
yield estimates for the shadowing times. Hence, the proper-

bedded inM. If p IS not much I_arger than the bifurcation ties of chaotic bursting are related to the statistics of shad-
point p.=1, there is a predominance of saddles, and the

L . b . : owing distances and times.
orbit is kept in the vicinity of the invariant subspace, so We present numerical results for the mé@,(4), consid-
generating the laminar regions in the transversal dynamics. P T

Once an orbit approaches a tongue, the resulting escape aﬁﬂng fixed values ok andb, and varying the bifurcation

reinjection leads to a chaotic burst, followed by anotherParameteéip=>1 to achieve situations where UDV and cha-
laminar regime and so on. As is further increased, other OtiC bursting occur. A “true” chaotic trajectory is known to
unstable periodic orbits embedded in the chaotic(satill ~ €Xist for initial trajectories X,y =0) randomly chosen i}
lose transversal stability, and more and more saddles becoréth respect to the Lebesgue measure. The pseudotrajectories
repellers. The relative proportion between saddles and repefl€ generate are meant to represent numerically obtained or-
lers will change with increasing, and this will reflect in the  Pits, for which we cannot have an initial condition exactly
average duration of the laminar regions, since as the relativ@laced ay=0 but which, instead, will have some transversal

repeller population increases @, chaotic bursting becomes Uncertainty. Since the part of the mag(3) does not depend
more frequent. ony, the evolution along the direction of both trajectories

The relative dominance of saddles and repeller€ inan is the same for all times, and the pointwise distance between
be quantitatively described by their contributions to the natu® chaotic trajectory and a pseudotrajectory will be simply the

ral ergodic measure of the invariant chaotic set. The naturaf@lue of y, for the latter. Finally, a computer-generated

measure i) is computed by using a typical trajectory, since PSeudotrajectory is likely to suffer the action of roundoff
it originates from a randomly chosen initial conditi83]. errors, which we can systematically simulate by corrupting

However, the set of unstable periodic orbits embedded,in OUr pseudotrajectory with randomly applied kicks of small
having zero Lebesgue measure, generates atypical measurB@gnitude 10%, which play the role of one-step errdi36].

and there is an infinite number of such atypical measures, We must emphasize that the pseudotrajectories do not be-
supporting the typical natural measure @n A relation be- 0ng to€) but are, strictly speaking, bona fide chaotic trajec-
tween these typical and atypical measures was proven to e¥Qries belonging to a larger invariant set in whi€his a

ist for hyperbolic systemg34], but numerical evidence has Subset. The fold introduced in the part of the map(4)
been given to extend its validity to nonhyperbolic 0f@s]. ensures that this larger cha_ot|_c setis recurrently closktto _
A typical trajectory eventually visits any neighborhood, no@nd does not asymptote to infinity, as it would be the case if
matter how small, of any unstable periodic orbit .  the cubic term in Eq(4) would have a positive sign, as in
Hence, there are different contributions to the natural meaRef- [27]. In the latter case, one would have a chaotic tran-

sure from saddles and repellers, in the sense of carrying dii€nt. However, our results are not essentially dependent on
ferent weights to the total measui@. the existence of this fold, since if the chaotic transient would

escape to infinity, we would generate other chaotic transients
by choosing another initial condition close fd. In Fig. 2,
we show two examples of high-precision pseudotrajectories
After the saddle-repeller bifurcation pt p. the invariant ~ generated using the procedure described above. The noise
chaotic set) becomes nonhyperbolithe splitting between level is fixed at 106 which can be regarded as the com-
stable and unstable directions is no longer continuous alonguter roundoff introduced by a double precision floating-
Q) and we expect that the shadowability of chaotic trajectopoint arithmetics. Figures(2 and 2Zb) refer to different
ries in Q) breaks down fop=p,. In this spirit, we can call postcritical values of the bifurcation parametgr{1). We
the process UDVintermittency since here chaotic bursting is record the values of,,, or the pointwise shadowing dis-
accompanied by the lack of hyperbolicifip Ref.[25] UDV  tances, at each time, yielding the corresponding log distances
is also called an “intermittency in miniature” z,=Inly,|. The use of an external kick creates a “barrier” of
In order to describe how shadowing distances and timewidth 10" 9 preventing pseudotrajectories from having shad-
are numerically estimated, we consider a reference, or “true’owing log distances less thanon average. The shadowing

Ill. SHADOWING DISTANCES AND TIMES
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FIG. 4. Shadowing times as a function of the kick strength ex-

FIG. 2. Pseudotrajectories for the mé&d),(4) with a=4.0, b ponent, or the number of accuracy digits. The various lines are
=5.0, and a noise level 10, with =16, and(a) p=2.30; (b) p least-squares fits obtained for different values of the bifurcation
=2.55. parametep. The top line is forp=2.1 and the lines below are for

. . . values ofp with a constant increment afp=0.05. The slopes of
distances may be large due to chaotic bursting, but they argqase jines are depicted as boxes in Fig. 7.

predominantly very smal{within the laminar regions the
bursting being more effective asincreases.

Figure 3 presents statistical distributions of the shadowin
log distanceg, for two postcritical values op and external
kicks of different magnitudes. In all depicted cases, (-
malized distribution height falls rapidly down to zero for
shadowing distances less than 10 as expected, and de-
creases exponentially for higher shadowing distances

wherePy4(z)dz is the probability for the shadowing log dis-
fance to lie betweer andz+dz. As p increases from 2.1
[Fig. 3[@] to 2.55[Fig. 3(b)] this decrease becomes slower
[x(p,2)<k(p;) for p,>p,;], meaning that, as the UDV ef-
fect is more intense, we have a progressive dominance of
higher shadowing distancéer taller spikeg This is in ac-
cordance with the greater content of transversely unstable

P4(z)=Pgexd — «(p)(z—Inq)], (5) periodic orb_its asp is increased frorrpc=_1 and, conse-
quently, an increased transversely repelling behavior on av-
= ' Do~ ' N erage.
] A 7] The shadowing log distances experience spikes of various
‘B I\ — q=16 . . . ) R . .
= i PR e g=15| ] heights, but remain in the immediate vicinity of the invariant
5 o02f WA —- g=14| subspaceM, until they burst chaotically and return tb1.
= | : i We define the shadowing time as the interval it takes for the
% o1l ] pointwise shadowing distance to grow to the order of the
% attractor size, oy=y,=1. Figure 4 shows the dependence
S i s | of the log-shadowing times, for different valuesmfon the
RT3 12 s . noisy kick strength levetj. The top curve was obtained for
01 . . . . Po=2.1, and the curves below correspondpte= po+ j op,
= | ! ! ! ® | forj=1,2,...,9 andSp=0.05. The results suggest that the
.%‘J 0,075 1 distribution of the average shadowing times is of a power-
= law nature with respect to the noise leeglThis can also be
5 005 _ derived by integrating the distributiaid) for shadowing log
A= distances, in order to obtain the probability for a shadowing
% 0005 i distance to be greater than, at a given noise leva,
W) -
Y B . P(a)~exit —k(P)(INya=Ing)]=g“®.  (6)
20 -16 -12 -

1 8
pointwise shadowing log-distance ) ) o
In the next sections, we will see that these probability distri-

FIG. 3. Statistical distribution of pointwise shadowing log dis- butions for the shadowing distances and times can be theo-
tances for(a) p=2.10, (b) p=2.55, and three different noise levels. retically justified by rather general arguments, and that the
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characteristic exponemt can be predicted from the statisti- ' ' T : | :
cal properties of the finite-time Lyapunov exponents.

0.04 - —
- p= 1000
IV. FINITE-TIME LYAPUNOV EXPONENT —_ p=§-;5;*)
K — o3 _
When an initial condition is placed off but near the invari- 3]~ i
ant chaotic sef) C M, it will generate an orbit that visits the -~
neighborhood of unstable periodic orbitshwith different 2 s .
numbers of unstable directions. Now let us imagine a small(‘:ﬁ

ball of initial conditions having a nonempty intersection with ~~,0.02
M. What will happen as time evolves? If the ball is placed ~-
near a saddlétransversely stablethe dynamics at a given i
time will make the ball shrink on average along the transver-
sal direction and turn into a thin cigarlike tulyg]. After 001
some time, the cigarlike tube will approach a repellenh
(transversely unstableand will expand on average also
along they direction. This process is likely to repeat itself as ]
many times as the trajectories alternately approach saddle -2 -1
and repellers inM.
The finite-time Lyapunov exponents in the transversal di-

rection, Ay(Xo,Yo,n), are the average rates of these ttmpo- g, 5. probability distributions for finite-time transversal

rary expansions and contractions along yreeis, for which | yapunov exponents fan=50 and different values of the bifurca-
they can be negative or positive, depending on whether th§on parameter.

trajectory is in the neighborhood of a saddle or a repeller,
respectively. They are defined, for a two-dimensional map

F(x,y) of the form(1),(2), as[37] finite-time counterpart does depend B On considering
1 the map(3),(4) for p>1, the intertwined sequence of saddles
)\y(xo,y():o;n):ﬁ|n||DF”(xO,yO=o).vy||, (7  and repellers inM is such that a bursting trajectory will

have nonoverlapping sections of finite duration, for which

wherev, is the singular vector related to the singular valuefluctuates about zer@2]. S
¢, of then times iterated tangent map. The infinite-time limit _ 1t is useful to introduce another probability distribution

of Eq. (7) is the transversal Lyapunov exponent PL(\y(X0,Y0;Nn),N) for the finite-time Lyapunov exponents,
_ where the initial conditionsX,yo=0) are randomly chosen
A= lim\y(Xo,Yo=0:n), (8 according to the Lebesgue measure(hf From this prob-
n—oo

ability distribution, we can obtain moments of functions of
and has the same value for almost ®jle J, whereas its the finite-time exponent, as averagés],

m=(\y(Xo,Yo=0,))= j_:)\y(xo Yo=0nPL(\y(Xg,Yo=0,n),n)d\, 9

and dispersions, InG"(\7) nG"(\7)
PL()\y(n)vn)% 2 T ex%_ 2 U ()\y_)\T)Z:|'

Ta={[Ny(X0.Yo=0n) —m]2)=(A\2)—(\,)2, (10 ho

assuming proper normalization féx (\,).
For n large enough, this distribution can be written in the ~ We can obtain a numerical approximation for this prob-
following form [38]: ability distribution by considering a large number of trajec-
tories of fixed length, sag=50, from initial conditions ran-
[ING"(\y) _ domly chosen in). Figure 5 shows the distribution of the
PL(vy(n),n)= om © nety), 1D finite-time exponentsP(\,(50)), for three different values
of the bifurcation parametep. The distributions have a
where the functiorG(\) is such thatG(A1)=G'(A1)=0 Gaussian-like shape, as expected from @§), and the dis-
andG”(A1)>0. Expanding in powers of,— A+, we have a tribution as a whole drifts toward positive values)af, asp
Gaussian probability distribution, increases, without noticeable distortion. This is illustrated by
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stable eigenvalue of the periodic orbits embeddeflinAs

the trajectory approaches orbits with different numbers of
unstable directions, it will move either toward or apart from
Q) for finite time segments. Lsat, be the transversal distance
of the pseudotrajectory at timke During a short time interval

of length n, the local expansion rate is the corresponding
finite-time  transversal exponent, such thay,,,

~ Yy exgnA (n)]. It follows that the log-shadowing distances
satisfy z,; n,~2z+nAky(n).

When Q) exhibits UDV, at least one of the time-expo-
nents\(n) fluctuates in a stochastic fashion about zero, and
these are the random innovations which kick the log-
shadowing distances toward or away from a chaotic trajec-
tory confined to the invariant subspadd. Hence, the time
evolution of the log-shadowing distances can be regarded as
an additive random process, with a diffusion rate being given
by the dispersion of the finite-time exponents, which we
1 2 3 4 5 have measured by the total variane@ of their statistical
distribution P, (Ay(n),n). However, the distribution of
Ay(n) is such that there is a different amount of positive and

FIG. 6. Average value of finite-time transversal Lyapunov expo-negative valuessee Fig. $. For example, if their averaga
nents vs the bifurcation parameterfor n=1 (circles andn=50 IS positive the transversal displacements of a pseudotrajec-
(crosses tory will have a positive average expansion rate, which de-

scribes a biased random walk, in which a drifthas been
Fig. 6, where we depict the average finite-time expori@nt included [26]. The arguments above justify the use of a
versusp, showing tham builds up toward positive values as Chapman-Kolmogorov diffusion equation for the spatiotem-
p increases, and vanishespat p* ~2.55. Note that the plot poral evolution of the distribution of the shadowing log dis-
does not change if we use time delays widely different fromtancesP(z,n) with respect to the tima and the log distance
each other(like n=1 andn=50). In fact, it follows, from z (assumed to be continuous variablp40],
Eqg. (12), that the average finite-time exponent does not de-
pend onn and it is equal to the infinite-time exponemt dP(z,n) o? *P(z,n) dP(z,n)
=\, given by Eq.(8), and which governs the transversal aH 2 972 +m gz
stability of ) as a whole. The point* =2.55 is known as a

blowout bifurcation since() becomes transversely unstable \we have obtained a chaotic pseudotrajectory (Byplacing
for p>p* [8]. In this situation, the saddles and repellers ofthe initial condition off but close to the invariant subspace;

bifurcation parameter (p)

(13

() carry equal weights in their relative contributionsN@,  and (i) adding kicks of a constant strength T0to it. The
in terms of the natural measure @f, so that their contribu- |atter feature can be included in a stochastic model of the
tions are precisely balanced @t p*. situation by a reflecting barrier placed gti=10"9, which

The dispersion, or variance of the averagevith respect  jmplies a boundary condition a* =¢q. Moreover, we have
toa Sample of Size, giVen by Eq(lO), is constant for alb to impose the fo”owing boundary Conditiong?(z_)oc)
values. This means that the probability distribution does not- (yp/4z), ..=0. The diffusion process governed by Eq.
alter its shape ap changes(see Fig. 5 Using Eq.(12) we  (13) has an equilibrium distribution given by?Peqo/dn)
find, for a Gaussian distribution, thaf=1/G"(\1) does not =0, which reads
depend om. However, for later reference, we note that the

variance of the total population is equal to the product of the 2|m| 2|m|
variance of the average by the sample $88, such that the Peq(z,n)=—-exg — —-(z=Inq) |, (14
total variance of the finite-time exponentsdd=na?. 7 7

which is similar to the numerically obtained distribution
V. A STOCHASTIC MODEL FOR SHADOWING P4(2), given by Eq.(5), provided we identify the decay
DISTANCES exponentx with the so-callechyperbolicity exponeri25],

The link between shadowability breakdown and chaotic
bursting is the mixing between unstable orbits with different h= 2|m| (15)
numbers of unstable directions, and this diversity should be o2
reflected in the statistical properties of the corresponding
finite-time Lyapunov exponents. This is the main idea underThe statistical distributions in Fig. 3 are in fact of an expo-
lying a stochastic modeling of the chaotic bursting. nential nature and have a cutoff at the reflecting barrier. Fig-
A pseudotrajectory starting off but near the invariant sub-ure 7 shows a comparison between the numerically obtained
space will wander along thredirection according to the un- slope of the exponentially decaying distributi@mossesand
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0.7 — T T T T T T T T T shadowing timer, by imposing thaty,,, be greater than
: + . ya=1. Using Laplace transforms, we obtain the following
06 - theoretical estimate of the average shadowing fig:
- ' _ (== (=1~ T 16)
05 — — T)= — q — _——
= + h |m|
g N i
g, 041 + - In terms of the intermittent chaotic bursting, a numerical
s L i estimate for the shadowing time is the average valgeof
%0 03 o + N the interspike intf:rvals, or laminar regions, yielding a statis-
§ | o i tical distribution Py, scaling linearly with7. For g small
@ A 8 + enough, this expression reduces to a power-law scaling with
02 N § ﬁ 4 7] the noise leved,
o1p R, : Br(q)~d", 17
i g |
0 P S R T N $ D‘ in agreement with the numerical result of E), provided
2 2.1 22 23 24 25 2.6 x(p)=h.
bifurcation parameter (p) It should be remarked, however, that EG6) may not

hold if mis near zero, which nevertheless, does not spoil the
FIG. 7. Comparison between the slopes of statistical distribusmall-q scaling above. This power-law scaling is confirmed
tions of shadowing distances and times. The numerically obtainey our numerical experiments. The slopes of the various
slopes for distributions of log-shadowing distandesosses are  curves in Fig. 4, corresponding to different values of the
based on Fig. 3; diamondgiangles stand for the theoretical pre- bifurcation parametep, are depicted as boxes in Fig. 7. We
diction of Eq.(14) based omn=2 (n=50) finite-time Lyapunov  have a better agreement between theoretical and numerical
exponents; boxes are for numerically obtained distribution slopes ofesults for the shadowing time distribution than for the log-
shadowing times, according to Fig. 4. shadowing distance distribution. The reason for this fact lies
in the different definitions we use for shadowing distances
the theoretical prediction of E(qlS) (diamonds and triangles and times. The former are very precise]y defined as point_
are for different finite-time exponentsThere is an increas- wjse distances between two trajectories, whereas the latter
ingly better agreement among these values, as we approagfe defined in a less accurate way singeshadowing times
p=p*=2.55, the value for which the UDV effect is the are measured when the log-shadowing distances exceed an
most pronounced. arbitrary threshold(ii) we compute average values over very
The good agreement between theory and numerical eXong chaotic transients. Hence, the overall behavior of shad-

periment atp=p* is a consequence of the fact that, whenowing times is more likely emulated by a stochastic model.
the UDV effect is more pronounced, the average finite-time

exponent vanishes(=0), so that there is an approximately
equal number of positive and negative innovations acting on
a pseudotrajectory shadowing a chaotic trajectorflinin The breakdown of shadowability for chaotic trajectories
this case, the Markovian random walk approximation is verydue to unstable dimension variability is a very serious con-
good and, as we move away from this value, the bias causestraint on the applicability of mathematical models for such
by a nonzero average exponent makes the equilibrium distrdynamical systems. For a physical system, even when the
bution given by Eq.(14) a poorer version of the stochastic model is based on sound theoretical framework, there may
process. Actually the bursting is chaotic, and some degree dfe doubts about the validity of computer-generated trajecto-
dynamical correlation is expected to take place at every mories, since in absence of continuous shadowability of trajec-
ment, preventing us from successfully using linear stochastitories, no pseudotrajectory of a reasonable length is expected
models such as those considered here. The finite-time expte be shadowed by a real chaotic trajectory. Even long-time
nents withn=2 (diamonds in Fig. Y are consistently better averages may be of no practical interest due to the exponen-
than the ones witm=50 (shown in Fig. 7 as trianglg¢s tial amplification of extremely small one-step errors. In this
which implies that the underlying dynamical structure caus-case we would have to resort to chaotic time series analysis
ing UDV is actually very complicated. The saddles and re-to extract information about the system directly from the
pellers belonging ta() are so densely intertwined that a observed data. Spatially extended systems of coupled con-
pseudotrajectory will suffer influences of the different num-tinuous or discrete time oscillators were shown to present
ber of their unstable directions over very short periods ofuDV for nonzero parameter ranges, and this fact pervades an
time, and an=2 exponent is expected to give results closereven wider class of dynamical systems, if we consider that
to a Markovian stochastic process, when compared with airtually all numerical schemes for solving partial differen-
n=50 exponent. tial equations are based in some kind of discretization lead-
The stochastic model we use for a biased random wallng to coupled systems. In spite of this, UDV can be ob-
with reflecting barrier can also be worked out to estimate theserved in very simple dynamical systems, like the two-

VI. CONCLUSIONS
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dimensional map considered in this paper. related to the statistical properties of the finite-time
Intermittent chaotic bursting has been extensively deliyapunov exponents along the transversal direction. The av-
scribed in the literature, and it is present in a variety oferage shadowing times, on their way, have a power-law scal-
mathematical models, as well as in experiments. When g with the noise level. A theoretical stochastic model, as-
system fails to be hyperbolic due to UDV, it may presentsuming a biased random walk with reflecting barrier at the
intermittent bursting if it exhibits some symmetry leading to nojse level, is used to explain the numerical results, and the
a low-dimensional invariant Subspace. This type of intermit'agreement is as good as one approaches the dynamica' re-
tent transition has been observed, for example, in the transgime where the UDV is most intense, namely, at the vicinity

tion between synchronized and non-synchronized behaviddf a blowout bifurcation, in which the invariant subspace
in a lattice of piecewise linear maps with a long-range coujpses its transversal stability.

pling [41]. For general systems &f coupled maps or oscil-
lators, the invariant subspace of interest isthéimensional

synchronization manifoldwhere M<N), and we would ACKNOWLEDGMENTS
have to investigate the correspondiNg-M transversal di-
rections. This work was made possible through partial financial
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